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A mathematical approach to seriation

By D. G. KenparL, F.R.S.
Statistical Laboratory, University of Cambridge

\

We consider the problem of seriating tombs in a cemetery, using only the presence or absence (in each
tomb) of objects carrying traits believed to be chronologically significant. This information can be
summarized in the form of a matrix 4 of zeros (indicating absence) and ones (indicating presence),
where each row of the matrix is associated with a tomb, and each column with a ‘variety’. A mathemati-
cal investigation suggests that much (perhaps all) of the information relevant to seriation is stored in
the matrix product 44’, and accordingly this similarity-matrix is taken as the starting-point of a multi-
dimensional scaling procedure. Experiments with artificial data arising from a linear structure show that
a two-dimensional output in the form of a horse-shoe is to be expected. If we then read off the labels of the
points representing the graves, starting at one ‘vertex’ of the horseshoe and working round it till the
other is reached, we obtain an estimate of the serial order (or of the serial order reversed).

I
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1. INTRODUCTION

Many of the papers presented to this Symposium have been concerned with questions of
absolute chronology, but here we shall look at the less demanding matter of seriation; presented
with an assemblage of prehistoric tombs we should like to know their correct temporal order,
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but we do not press for an absolute date for the assemblage, and we do nof expect a shift of say
ten places in the temporal order to represent a lapse of the same amount of time at all stages
of the series.

It is clear that an absolute chronology cannot be constructed without some reference to
external events (for example, changes in the Earth’s magnetic field), and so it is not surprising
that the natural sciences should be of direct assistance there. But seriation (as was realized by
Flinders Petrie 1899) is, at least in some cases, possible by the use of internal evidence alone, and
here the assistance provided by the natural sciences is only indirect (through the development of
the high-speed computers which are necessary to perform the calculations).

The basis of ‘internal’ seriation methods is the crude but extremely powerful principle
brought into action by Petrie in the context of Egyptian prehistory: if we have a good chronologi-
cally significant typology for the objects found in the tombs, then the extent to which the contents of two
tombs are similar will be an indication of how close together they should be placed in the temporal series.

The ‘if” here is rather a big one; how to construct a ‘good’ typology, and how to assess
its ‘ chronological significance’, are serious and difficult questions indeed, but they are primarily

questions for the archaeologist rather than the mathematician, and we shall therefore not enter
further into these matters beyond remarking that mathematical principles and computer
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practice do have some contributions to make to the problem of constructing a typology.

THE ROYAL A

If a ‘good’ and ‘chronologically significant’ typology is taken as given, then we may sum-
marize the internal evidence relevant to the matter of seriation by constructing a table of
double entry, or incidence matrix as it is sometimes called, in the following way. The table is to
have as many rows as there are tombs, and each row will be associated with a unique tomb;
it is to have as many columns as there are ‘varieties’ in the typology, and each column will be
associated with a unique variety. If we name the ith tomb and the jth variety this will uniquely
determine a cell in the table, and the entry there (the (7, j)th element of the incidence matrix)
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126 D.G. KENDALL

is set equal to 1 (0) according to the excavation record; 1 means ‘jth variety present in the ith
tomb’, and 0 means ‘absent’.

Now suppose that by good luck the tombs happen to have been arranged in the correct
chronological order; then we should expect the following pattern of 0Os and 1s to be very
roughly displayed by the incidence matrix for the excavation:

Pattern P. In every column, if it does not consist entirely of 0s, the 1s are bunched together.

(The assertion made in this last paragraph in fact describes what we mean by a ‘chronologi-
cally significant typology’. The typology may be a good one in other respects, and yet the
assertion may be false: it is easy to think of mechanisms which would bring this state of affairs
about. When it is feared that the assertion s false, then the following methods are not recom-
mended: caveat emptor!)

All we have to do, then, in order to seriate the tombs, is to rearrange the rows (the rows but
not the columns) of the table in such a way that an approximation to pattern P is brought about.

If the number of tombs (= rows) is small, say 6 or 7, then this may be a fairly simple task,
but in practice the number of rows may be anything from the order of 50 (as in the example to
be presented here) to 500 (as in the example studied by Petrie). The number of possible rearrang-
ments for the rows is then so much more than astronomically vast that it is utterly impossible
to test all the rearrangements, whether by hand, or with the aid of high-speed computers now
available, or with the aid of the fastest computer logically thinkable, even if we were to run it
for the conventionally accepted ‘age of the universe’. The task is made the more formidable by
the fact that we do not expect pattern P to be exactly attainable—if it were, and uniquely so,
a short cut to the solution might then be possible.

In an earlier attack on this problem (Kendall 1963) I expressed it in statistical terms and
showed how (at the cost of introducing a number of rather artificial assumptions) one could
set up a ‘maximum likelihood’ procedure for estimating the desired rearrangement of the rows.
This procedure associates with every possible permutation (the mathematician’s word for
‘rearrangement’) a figure of demerit S, and the rule then is: find the permutation for which S is
least. 1t is quite impossible to follow such a rule because one cannot examine the value of S for
every permutation; there are just too many of them. A modification of the rule such as (1°)
take a ‘random walk’ through the set of all permutations for so long as time allows, and accept
the permutation thus encountered having the smallest S value, or (2°) proceed more systemati-
cally through the permutations, using some campanological algorithm, and choose the permuta-
tion as before, might be worth exploring; the report by Hole & Shaw (1967) would be of
considerable assistance in such a venture. Here, however, we wish to describe an entirely
different method of attack, and to show how it has been successfully applied to a full-scale
archaeological problem. The details of the mathematical argument have been set out elsewhere
(Kendall 19694, ) and will only be summarized here. The full-scale application of the method
has not been reported on before.

Before entering into a description of the method one final remark is needed, to the effect
that no unique ‘solution’ is to be expected. In the first place, if any rearrangement yields a close
approximation to pattern P then we have only to place the tombs in reverse order and we at
once obtain another acceptable rearrangement. Usually, of course, one of two such mutually
reverse rearrangements would at once be rejected on ‘external grounds’, say because it placed
some ‘obviously’ early tomb at the late end of the series, etc. Secondly, and this is more
important, no perfect realization of pattern P is to be expected, and therefore each ‘good’
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rearrangement will have a large number of equally good ‘neighbours’, generated from it say
by a few exchanges of consecutive rows. Of course such small displacements in the serial order
will not be of archaeological significance, either, but some quite major displacements of particu-
lar tombs may also have little effect on the degree of success with which pattern P is attained,
and the displacements may be such as to affect crucially the subsequent chronological decisions.
Evidently therefore a method, to be really satisfactory, must allow for the possibility of more or
less independent repeat analyses, so that we can see whether a surprising feature of one ‘solu-
tion’ is in fact common to all ‘solutions’, or at any rate, to most of them. We shall mention two
ways in which this replication can be achieved (see §§40, and 4f below), although there is
evidently a limit beyond which one cannot go unless there is a further stock of data to draw
upon.

2. THE METHOD

We first quote a fact about matrices of zeros and ones which was established elsewhere (Ken-
dall 1969 a). Suppose that the matrix 4 is such that at least one rearrangement of the rows will
produce pattern P exactly. (We then say that we have in 4 a row-scrambled °Petrie matrix’,
or equivalently that the given matrix 4 is petrifiable.) It can then be shown that all the informa-
tion contained in 4 and relevant to the problem of row-rearranging 4, in order to exhibit the
pattern P, is contained in the derived matrix 44" whose (7, j)th element is

the number of varieties common to the ith and jth tombs.

(This new matrix is ‘square’, that is, it has as many rows as it has columns, and each row and
each column alike is uniquely associated with a tomb.)

Now, according to Petrie’s basic principle, the (7, j)th element of A4’ will be large to the
extent that it is reasonable to bring the ith and jth tombs close together in the serial order. In
other words, in 44" we have a similarity matrix for tombs, where similarity means degree of close-
ness in the serial chronology. If therefore we know of any procedure which will recover a linear
order for objects known to be capable of being linearly arranged, and for which we have avail-
able a similarity matrix of the type described, it will be natural to apply that procedure in the
archaeological context using A4’ as a starting-point. This is intuitively plausible in the archaeo-
logical situation when we do not expect exact petrifaction to be possible, and it is true in a much
more substantial sense when A really is a row-scrambled Petrie matrix, for then 44’ contains
all the information relevant to a serial chronology.

Now such a procedure does exist: the multi-dimensional scaling (MDscAL) program of
Shepard and Kruskal (Kruskal 1964). This starts with a ‘ranked’-similarity matrix and
produces as output a geometrical configuration. To illustrate the idea in a simple case,} suppose
that we wish to make a map of a country and that we have available information of the following
sort: an automobile handbook supplies a table showing the distance in miles by the most
convenient route linking each distinct pair from among N towns 77, T%,...,7Ty. We do not
wish to use such detailed information, and so we extract from the given table the following

simpler one: between 7, and 7, the road distance is smallest;
between 7, and T} the road distance is next-smallest;

between 7, and T, the road distance is greatest.
1 I am indebted to Mr A. D. McLaren for this example.
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On being presented with the information contained in this new table, the MpPSCAL program
will compute the coordinates of the towns 73,75,...,7y in a synthesized map, starting from
an entirely arbitrary (random) initial map, and will draw the final map on tracing paper. The
synthesized map is constructed so that as far as possible the ordering of the town-pairs (7,,73),
(T,Tg),...,(T,,T,) is the same no matter whether we use the road distances recommended
by the automobile handbook, or the direct distances on the synthesized map constructed by
the computer. Notice that the computer does nof know the actual handbook distances; it only
knows the ordering contained in the second table, telling it which is the closest pair, which is
the next closest pair, and so on, down to the most remote pair.

OBaia Mare OVatra Dornei

N
OSuceava
Oo0radea
O Clyj o) Olasi
Piatra Neamt
OArad OTirgu Mures
OBacau
OMiercurea Ciuc
OTimisoara ODcva
O Sibi ,
. ibiu Brasov
OResnta Predeal
) L . Sinaia )
Rimnicu Vilcea O Ploiest OGalau
O Ploiesti
OTing Jiu  Opitesti Oulcea
Turnu Severin @) Bucuresti
OCraiova
Mamaia
OGiurgiu
O Constanta
@) Mangalia

Ficure 1. A MpscAL map of Romania.

It is a matter of experience that the maps so constructed can be astonishingly accurate, even
when the country is so mountainous that the most convenient road route is very far from being
direct. For example, in figure 1 the reader will see a map of Romania constructed in this way,
and he may care to reach for an atlas and form an opinion of its ‘qualitative’ accuracy.

Here we have a situation in which the objects (the towns) have an unknown (or, as here,
suppressed) two-dimensional structure, and the computer reconstructs this from appropriate
similarity data. But what happens if the underlying structure is one-dimensional, as in a
chronological problem? We can best answer this question by a further illustration.

Let us take a system of 51 objects labelled by the numbers 1,2,...,51; we are to think of them
as capable of being arranged along a straight line (which might for example represent the
time-axis), the jth object being located at the point with coordinate j. We shall call the objects
04, O,. .., Oy . If we told the computer the actual distance from each O; to each 0, it would
not be very surprising if it managed to recognize the linear character of the data and to produce
a fair graphical representation of it, but we shall tell the computer much less than this; in fact
we shall simply provide it with the following information.
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The pairs of objects may be arranged into 9 groups as follows:

(i) the first group contains the most closely related pairs of objects: these are (0,,0,)>
(01’03), (01’04)3 (02’03)3 (02304)3 (02a05)3° RS} (050>051);

(i1) the second group contains the next most closely related pairs of objects: these are
(01’05)’ (Ola 06)) (01’07)’ (02’06)’ (02’07)’ (02’08)" c (047’051);

(viii) the eighth group contains the next-but=most-remote pairs of objects; these are
(013023)3 (01’024)> (01’025)’ (023024)’ (023025)3 (02,026),' s (029,051);

(ix) the last group contains the most remotely related objects; these are (0;,04)>
(01>027),' L) (01’051)> (023027)’ (02>028)3' ) (Ozaosl)a' ] (026’051)‘

In fact we know (but the computer does not) that the distances for the pairs in the first
group are 1, 2, or 3; that those for the pairs in the second group are 4, 5, or 6,. .. ; that those
for the pairs in the eighth group are 22, 23, or 24; and that those for the pairs in the ninth
group are 25, 26, 27,. . ., or 50 (this being the largest possible distance, namely that from 0, to
O;,). We are therefore making things harder for the computer in three different ways; we are
concealing the actual distances; we are lumping together distances 1, 2, and 3, distances 4, 5,
and 6, and so on: and we are lumping together as ‘very large’ all distances in excess of 24.

Again, we know that the label ; of the object called O; in fact specifies its position on the line.
The computer is aware that O; is labelled ; (the objects have to retain distinct labels or they
will become confused within the computer), but it does not know that j is a positional coordinate
for Oy; it does not know this (i) because we did not tell it that this is so, and (ii) because it is
too stupid to guess that it might be so.

It might be thought, then, that the computer really has very little information about the
original structure of the system of objects presented to it. However we may regard the informa-
tion supplied as a ranked-similarity matrix; we then call in the MDSCAL program, and allot
an arbitrary (random) initial configuration, and after 45 iterations we obtain the plot shown
in figure 24, where the points representing the objects are given their original object-labels,
and all object-pairs within the first group are linked by straight lines. It will be seen that the
original order has been reconstructed very well, but the slightly surprising feature of the plot
is its horse-shoe shape, which is even more striking after 5 further iterations (figure 24). This is
a consequence of our deliberate ‘blurring’ of the large distances, and has been found to be
characteristic of such situations. We may conjecture, therefore, that if we were to repeat this
procedure, taking the tombs as ‘objects’ and telling the machine which pairs of tombs have most varieties
in common, which pairs have the next largest number of varieties in common, and so on, until we come to
the (very many) pairs of tombs that have the least number (zero) of varieties in common, then we would
again obtain a horse-shoe output, and could obtain a serial chronology by reading off the tomb labels as one
proceeds around the horse-shoe from one vertex to the other. (Of course we should obtain either a chron-
ology or an anti-chronology, according to the twofold choice of the vertex from which we
start).

We have now formulated a method for obtaining a serial chronology, and it only remains
to find a suitable test excavation and to put it into practice.

9 Vol. 269. A,
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F1cure 2. A MDscAL reconstruction of strictly linear data;
(a) 45 iterations, (4) 50 iterations.

3. THE APPLICATION

The method described in the preceding section was published (Kendall 1969a, b) before it
had been tested on large-scale genuine data. It is now possible to report on its performance in
constructing a serial chronology for the La Téne cemetery at Miinsingen—Rain for which a very
carefully worked-out typology of the fibulae, anklets, bracelets, etc. is available (Hodson 1968).
Dr Hodson selected a set of 59 tombs for analysis, and supplied an incidence matrix 4 of 59 rows
(tombs) scored for 70 columns (varieties). He had previously worked out a serial chronology
himself, but this was concealed during the analysis by a random encoding of the tomb- and
variety-labels. The possibility of subsequently comparing the computer seriation with that of
Hodson was of course one of the motives for selecting this material for analysis. Another was
the fact that the Miinsingen-Rain cemetery is long and narrow, and that the interments there
may very well have started at one end and proceeded along it; thus there is also the attractive
possibility of comparing the computer’s seriation with the serial ordering of the tombs along
the major axis of the cemetery.

On computing 44’ it was found that the pairs of tombs, when ranked according to the
number of varieties held in common, were arranged as follows:

1 pair with 7 varieties in common;
4 pairs with 6 varieties in common;
7 pairs with 5 varieties in common;
7 pairs with 4 varieties in common;
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38 pairs with 3 varieties in common;
93 pairs with 2 varieties in common;
247 pairs with 1 variety in common;
1314 pairs with no varieties in common.

This information, together with the assignment of each one of the 1711 pairs to the appro-
priate one of the 8 groups (0 varieties in common, 1 variety in common, ..., 7 varieties in
common) was supplied to the computer as the effective input for the MpscaL program, and
no further information than this was used in the seriation procedure. The initial two-dimensional con-

.
PN

y B

figuration for the 59 points representing the 59 tombs was prescribed by a randomizing

v &

mechanism, and the program was then run for 50 iterations. The resulting plot is shown in
figure 3. Here each point (= tomb) is shown as a small circle containing a number-label. If
two tombs hold 2 or more varieties in common they are regarded as ‘strongly linked’ and the
points representing these tombs on the plot are linked by a straight line (drawn by the
computer).
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j Ficure 3. The MpscaL output for the Miinsingen—Rain data, using 44’ as a similarity-matrix.

> E (The labels show the serial positions of the tombs in Hodson’s chronology.)

8 ﬁ The horse-shoe form of the plot stands out well, and a seriation can be obtained from it by
O reading off the labels identifying the graves, as seen from the ‘centre of gravity’ of the whole
= O array (the point of intersection of the two perpendicular lines) ; thus, reading anti-clockwise, we
I~ obtain the seriation:

1, 3, 2, 9, 4, 7, 6, 811,13,
12, 10, 14, 5, 17, 15, 21, 19, 16, 18,
22, 25, 23, 27, 26, 24, 31, 30, 29, 28,
37, 36, 34, 33, 35, 38, 40, 39, 42, 32,
41, 43, 45, 44, 47, 54, 50, 46, 49, 20,
52, 51, 58, 56, 53, 48, 55, 57, 59.
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Here (and in figure 3) the labels have been decoded and are the serial positions which were assigned
to the tombs by Hodson. This has been done to enable the reader to compare the computer’s
seriation with that of Hodson with the minimum of trouble. The agreement between the two
is so good as to be somewhat startling.

As a second check on the method, figure 4 was prepared. This is a genuine map of the

74”
®
Q )
Q)
®®
o
®
®
&) @ ®
o%°
@ @@
®
@J.
&
@
@
clo)
° 3
®
@®
® ®

FicUurE 4. A true map of the Miinsingen-Rain cemetery, in which the tombs (shown as circles) carry labels
indicating their serial positions in the computer chronology derived from the ‘horse-shoe’ in figure 3.
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Miinsingen—Rain cemetery and here the tombs are represented by small circles located at
their actual geographical positions. This time the labels carried by the tombs and shown within
the circles indicate their positions in the computer’s chronology, so that the general increase in
label as one scans the cemetery from one end to the other shows that, using only the assignment
of the 1711 pairs to the 8 groups, we have to some extent succeeded in reconstructing the topography
of the cemetery.

4. DiscussioN

It is possible that the Miinsingen—Rain data was unusually favourable as a test for the method,
but the success of the latter with this data at least justifies similar experiments with other
suitable material. Some technical points will be noted in conclusion; these are of less than
general interest and the reader may choose to omit them.

(a) As a third check on the method the incidence matrix for the Miinsingen data was row-
rearranged in the manner dictated by the computer, and it was found that in all varieties
save one (in relation to one single tomb) pattern P was closely adhered to.

(b) It has several times been mentioned that the MpscAL program starts from a random
initial position. This can be varied at will, and so one obtains a number of different computer
seriations which it is of interest to compare. Five such seriations were obtained for the Miin-
singen data and showed strong concordance. This is a fourth check on the method.

(¢) A fifth check, implicit but not commented on above, was the fact that the plot for the
Miinsingen data turned out to be of the horse-shoe form.

(d) We do not yet know how to tell from the gross statistics of the incidence matrix whether
we have a seriation problem that will ‘come out’ by the present method, or not. The develop-
ment of such a ‘rule of thumb’ is urgently needed.

(¢) It may be possible to ‘unbend’ the horseshoe into linear form by reducing the weight
given to the highly dissimilar pairs (Conan Doyle 1892). (I owe this suggestion to Dr R. M.
Needham.)

(f) A further check on the method would be obtained by using not all pairs of tombs, but
various randomly chosen subsets of these.

(g) Frequently one finds that ‘varieties’ are multiply represented in tombs. From such data
one can always obtain an incidence-matrix by scoring 1 and 0 for presence and absence, as
usual, but information is being lost and so it is of interest that the theorem about 44’ [Kendall
1969a) which forms the basis of the present method can be extended as follows: in the case of
multiple representation, the information relevant to seriation is contained in the numbers ¢;;
calculated from

Cij = Zh‘: min (n,(2), 74(J)),

where ;, (i) denotes the number of representatives of the Ath variety in the ith grave. Here
‘seriation’ refers to the restoration of

Pattern Q. In every column (i.e. for each variety), the number of representatives per grave
increases to a maximum, and then decreases.

This is the natural generalization of pattern P when multiple representations occurs. The
HORSHU program (=the Shepard-Kruskal mpscAaL program supplemented by the further
procedures briefly outlined in the present paper) could thus be used without essential change
even in the case of multiple representation, and its performance in this role is now being studied.
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(k) Another use for HORsHU is to verify that material believed to be temporally homogeneous
is in fact so, for an occurrence of the horse-shoe pattern would be evidence against such
homogeneity.

(7) The HORSHU program as it exists at present cannot handle more than 90 tombs, and larger
cemeteries must be broken down and seriated separately, and the partial seriations must then
be combined. The design of such piecemeal analyses is also being studied.

(7) The general (0,1) method applies whenever we have data relating to two types of entity:

‘happenings’ (e.g. tombs) located precisely at a point of time;

‘fashions’ (e.g. varieties) which are in vogue for periods of time.
A score of 1/0 in a cell of the incidence matrix implies that some named ‘fashion’ was/was not
in vogue at the instant of some named ‘happening’. The possibility of achieving (approxi-
mately) pattern P amounts to this: that for each ‘fashion’, the ‘happenings’ in which that
‘fashion’ was manifested can be brought (approximately) together by a single serial rearrange-
ment of the ‘happenings’. Now identify a ‘happening’ with a point-mutant of a virus, and
identify a ‘fashion’ with a deletion-mutant for the same virus. When such viruses are bred
together in a host cell, recombination (reappearance of the ‘wild’ type) will occur if and only
if the ‘place’ of the point-mutation lies outside the ‘interval’ of the deletion-mutation on the
(linear) virus. Thus the record of such recombination experiments leads to an incidence
matrix 4, and on interpreting this suitably (recombination corresponds to ‘absence’, no
recombination corresponds to ‘presence’) we. can employ the HORSHU program to reconstruct
the linear structure of the virus, as established first by Benzer (1959 and 1961), just as if it were
a cemetery. ‘Time’, in this use of HORsHU, corresponds to location on the linear virus. This
program has been successfully carried out on data supplied by the M.R.C. Molecular Biology
Laboratory, Cambridge; it will be reported on elsewhere. (See also Fulkerson & Gross (1965)
for another mathematical approach to genetic seriation.)

In conclusion I should like to thank J. B. Kruskal and Jessie McWilliams who provided me
with a version of MpscaL on the Titan computer in the Mathematical Laboratory, Cambridge;
the Director of that Laboratory for computing facilities; Sarah Prior and Mary Brooks for
computing assistance; A. D. McLaren for numerous helpful discussions of novel uses of the
MDSCAL program and for suggesting the ‘towns’ example; and F. R. Hodson who supplied
the Miinsingen—Rain data and who has been a never-failing source of enlightenment and
encouragement.
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